Free | 150 credits

Z-Image (Z Image) on 6GB VRAM: Complete Low-End GPU Setup Guide 2025

Run Z-Image Turbo (Z Image) on budget GPUs with 6-8GB VRAM. Complete guide to GGUF quantization, memory optimization, and getting the best Z Image quality from limited hardware.

Z-Image TeamReddit··7 min read
Z-Image (Z Image) on 6GB VRAM: Complete Low-End GPU Setup Guide 2025

Z-Image Turbo's standard bf16 model requires 12-16GB VRAM. But with GGUF quantization, you can run it on budget GPUs with as little as 6GB VRAM.

This guide shows you how to set up Z-Image Turbo on low-end hardware and get the best possible results.

VRAM Requirements Overview

Standard Model

PrecisionVRAM RequiredQuality
bf1614-16GBMaximum
fp1612-14GBExcellent
fp88-10GBVery Good

GGUF Quantized Models

QuantizationSizeVRAM RequiredQuality
Q8_07.22GB9-10GBNear-lossless
Q6_K5.5GB7-8GBVery Good
Q5_K_M4.9GB6-7GBGood
Q4_K_M4.5GB6GBAcceptable
Q3_K_S3.79GB5GBReduced

Compatible GPUs

6GB VRAM (Minimum Recommended)

  • NVIDIA RTX 3060 (Laptop/Desktop)
  • NVIDIA RTX 4060
  • NVIDIA GTX 1660 Ti / 1660 Super
  • NVIDIA RTX 2060

Recommendation: Use Q4_K_M or Q5_K_M

8GB VRAM (Comfortable)

  • NVIDIA RTX 3060 Ti
  • NVIDIA RTX 3070 (Laptop)
  • NVIDIA RTX 4060 Ti
  • NVIDIA GTX 1080

Recommendation: Use Q6_K or Q8_0

4GB VRAM (Challenging)

  • NVIDIA GTX 1650
  • NVIDIA GTX 1050 Ti

Recommendation: Q3_K_S might work but expect issues. Consider cloud alternatives.


Download GGUF Models

Official Source

GGUF versions available at jayn7/Z-Image-Turbo-GGUF:

# For 6GB VRAM (Q4_K_M - Best balance)
wget https://huggingface.co/jayn7/Z-Image-Turbo-GGUF/resolve/main/z-image-turbo-Q4_K_M.gguf

# For 8GB VRAM (Q8_0 - Best quality)
wget https://huggingface.co/jayn7/Z-Image-Turbo-GGUF/resolve/main/z-image-turbo-Q8_0.gguf

All Available Versions

FileSizeDownload
z-image-turbo-Q3_K_S.gguf3.79GBLink
z-image-turbo-Q4_K_M.gguf4.5GBLink
z-image-turbo-Q5_K_M.gguf4.9GBLink
z-image-turbo-Q6_K.gguf5.5GBLink
z-image-turbo-Q8_0.gguf7.22GBLink

ComfyUI Setup

Folder Structure

ComfyUI/
├── models/
│   ├── text_encoders/
│   │   └── qwen_3_4b.safetensors  (Standard - can also quantize)
│   ├── diffusion_models/
│   │   └── z-image-turbo-Q4_K_M.gguf  (Quantized)
│   └── vae/
│       └── ae.safetensors  (Flux 1 VAE)

Node Configuration

Use standard ComfyUI nodes with GGUF loader:

[GGUF Model Loader]
├── gguf_name: z-image-turbo-Q4_K_M.gguf
└── output → [KSampler]

Text Encoder Optimization

The text encoder (Qwen3-4B) also uses VRAM. Options:

  1. Keep bf16: Prioritize prompt understanding
  2. Quantize encoder: Save additional ~2GB
  3. CPU offload: Slower but frees GPU VRAM

Memory Optimization Settings

ComfyUI Arguments

Launch with memory optimizations:

# For 6GB VRAM
python main.py --lowvram --preview-method auto

# For extreme low memory
python main.py --lowvram --cpu-vae --preview-method auto

# Aggressive optimization
python main.py --lowvram --force-fp16 --dont-upcast-attention

Key Flags

FlagEffectVRAM Saved
--lowvramAggressive memory management~2GB
--cpu-vaeVAE on CPU (slower decode)~0.5GB
--force-fp16Force FP16 precision~1GB
--dont-upcast-attentionSkip attention upcast~0.5GB

Generation Settings

Lower resolution saves VRAM:

ResolutionVRAM ImpactQuality
512x512-40%Lower
768x768-20%Good
1024x1024BaselineBest
1536x1536+50%Better (if VRAM allows)

For 6GB VRAM, stick to 768x768 or lower.


Python / Diffusers Setup

Installation

# Install with GGUF support
pip install git+https://github.com/huggingface/diffusers
pip install llama-cpp-python  # For GGUF loading
pip install torch --index-url https://download.pytorch.org/whl/cu121

Loading GGUF Model

import torch
from diffusers import ZImagePipeline

# For quantized models, use specialized loader
pipe = ZImagePipeline.from_pretrained(
    "Tongyi-MAI/Z-Image-Turbo",
    torch_dtype=torch.float16,  # Use fp16 not bf16
    variant="fp16",
)

# Enable memory optimizations
pipe.enable_model_cpu_offload()  # Key for low VRAM
pipe.enable_vae_slicing()
pipe.enable_attention_slicing()

# Optionally move VAE to CPU
pipe.vae.to("cpu")

Memory-Optimized Generation

# Generate with reduced memory footprint
image = pipe(
    prompt="A serene mountain landscape at sunset",
    height=768,  # Reduced from 1024
    width=768,
    num_inference_steps=9,
    guidance_scale=0.0,
    generator=torch.Generator("cuda").manual_seed(42),
).images[0]

# Clear CUDA cache after generation
torch.cuda.empty_cache()

Batch Processing (Low VRAM)

# Process one at a time, clearing cache between
prompts = ["prompt1", "prompt2", "prompt3"]

for i, prompt in enumerate(prompts):
    image = pipe(
        prompt=prompt,
        height=768,
        width=768,
        num_inference_steps=9,
        guidance_scale=0.0,
    ).images[0]

    image.save(f"output_{i}.png")
    torch.cuda.empty_cache()  # Critical for low VRAM

Quality Comparison

Visual Differences

QuantizationSkin DetailText ClarityFine LinesColor Accuracy
bf16ExcellentExcellentExcellentExcellent
Q8_0ExcellentExcellentVery GoodExcellent
Q6_KVery GoodVery GoodGoodVery Good
Q5_K_MGoodGoodGoodGood
Q4_K_MGoodAcceptableAcceptableGood
Q3_K_SAcceptableReducedReducedAcceptable

Best Use Cases by Quantization

QuantizationBest For
Q8_0Production work, portraits, detailed scenes
Q6_KGeneral use, good quality at reasonable VRAM
Q5_K_MDaily use, prototyping, most subjects
Q4_K_MPrototyping, iteration, concepts
Q3_K_SQuick tests, composition checks only

Troubleshooting

"CUDA out of memory"

Solutions:

  1. Reduce resolution (try 512x512)
  2. Add --lowvram flag
  3. Close other GPU applications
  4. Use smaller quantization (Q4 → Q3)
  5. Enable CPU offloading

Slow Generation

Expected speeds on 6GB VRAM:

ResolutionQ4_K_M Speed
512x512~8-12 seconds
768x768~15-25 seconds
1024x1024~30-60 seconds

If slower:

  1. Ensure CUDA is being used (not CPU)
  2. Check for thermal throttling
  3. Close background applications

Quality Issues

If results look worse than expected:

  1. Try higher quantization (Q4 → Q5 → Q6)
  2. Increase steps from 8 to 12
  3. Ensure prompts are detailed enough
  4. Check VAE is loading correctly

Model Loading Failures

Common fixes:

  1. Re-download GGUF file (may be corrupted)
  2. Verify file hash matches
  3. Update ComfyUI and custom nodes
  4. Check CUDA/cuDNN versions match

Alternative: Cloud Options

If local hardware is too limited, consider:

Free Tiers

ServiceVRAMCost
Google Colab12-16GB T4Free (limits)
Kaggle16GB P100Free (30h/week)

Paid Options

ServiceVRAMCost
RunPod16-48GB~$0.40-2/hr
Lambda Labs24GB A10~$0.60/hr
Vast.aiVariable~$0.30-1/hr

Online Interface

Use z-image.vip directly — no GPU required. Free, unlimited.


Performance Tips

Do's

  • ✅ Use Q4_K_M or higher for final outputs
  • ✅ Enable all memory optimizations
  • ✅ Clear CUDA cache between generations
  • ✅ Start at lower resolution, upscale later
  • ✅ Use 8-9 steps (turbo optimized)

Don'ts

  • ❌ Don't use bf16 on 6GB cards
  • ❌ Don't batch on low VRAM
  • ❌ Don't exceed 768x768 on 6GB
  • ❌ Don't skip cache clearing
  • ❌ Don't run other GPU tasks simultaneously

Recommended Configuration (6GB)

Model: z-image-turbo-Q4_K_M.gguf
Text Encoder: qwen_3_4b.safetensors (or quantized)
VAE: ae.safetensors (CPU offload if needed)

Generation Settings:
  Resolution: 768x768
  Steps: 9
  CFG: 1.0
  Sampler: DPM++ 2M Karras

ComfyUI Launch:
  python main.py --lowvram --preview-method auto

This setup reliably runs on RTX 3060 6GB with room to spare.


Summary

VRAMQuantizationResolutionExperience
6GBQ4_K_M768x768Workable
8GBQ6_K1024x1024Good
10GBQ8_01024x1024Excellent
12GB+bf161024x1024+Optimal

Z-Image Turbo is accessible even on budget hardware. Start with Q4_K_M at 768x768, then adjust based on your specific GPU and quality needs.


Resources


Try Z-Image online at z-image.vip — no GPU required, completely free.


Keep Reading